Monday 13 June 2011

More Than Meets the Eye





Or why I am not an atheist. The following are a few questions I ask MYSELF (so atheists need not get their knickers in a knot). One must question everything, as famous scientist Michio Kaku likes to say.

1) How did living things emerge from non-living things? I haven’t seen any satisfactory explanation from scientists. (I do read science magazines, by the way.)

2) How did we get from simple single-cell organisms to complex organisms like the human being? Evolving from extreme simplicity to mind-boggling complexity indicates direction. Can direction be achieved without guidance? Can an American missile hit an Iraqi tank in the middle of the desert without some guidance system? The evolutionists will immediately jump up and say that with a billion missiles in a billion years, we are bound to hit the tank one day. To which I will respond, why is it so blooming important to hit that tank anyway? And how do we know we have hit the tank without a feedback system? Scientists will reply that there is a system and it’s called Natural Selection, supposedly based on trial and error. What they are really saying is that Father Evolution is doing the selecting and not God. It’s just a name change, basically.

3) What happened to the fossil records? Let’s assume there are only 6 steps in the evolution from ape to man (which is a gross over-simplification). We start with 100% ape. Step 1: 5/6 ape, 1/6 man. Step 2: 4/6 ape, 2/6 man … Step 5: 1/6 ape, 5/6 man. Step 6: 100% man. If the change occured gradually over millions of years, where is all the evidence? It took archaeologists years and years to find the “missing link”. What we have a lot of are fully-formed fossils of all creatures and hardly any in-between ones. Why?

4) Is it possible or plausible for DNA to form the way scientists tell us? We got millions of cells in our bodies. These cells are so small we need microscopes to see them. Yet most of them contain DNA. DNA is like the detailed architecture, mechanical, electrical, civil and structural drawings for constructing a building. The human body is infinitely more complex than any building on earth. All this information - written in an elaborate code that requires super computers to decipher - is packed into a cell so small we can’t see it with the naked eye. Is evolution a good explanation?

5) How did nature managed to achieve ecological balance without guidance, when man has only caused massive environmental damage with our brilliant minds?

6) This one’s from CS Lewis. Where did our sense of fair play come from? When a bird gets eaten by a snake, does it lament about how unfair the world is?

I really have no answers for the questions above. But they do point me in a certain direction.

Saturday 19 February 2011

COGNITIVE PROCESSES IN CREATIVITY

[Note: This is one of the best articles on creativity that I have come across so far. Again, it comes back to hard work.]

January, 1990
http://www.informatics.sussex.ac.uk/courses/ModDis/Internal/HayesCreativity.pdf

By John R. Hayes
Carnegie Mellon

"Creative" is a word with many uses. Sometimes it is used to describe the potential of a person to produce creative works whether they have produced any work as yet or not. Sometimes it is used to describe every-day behaviors as, for example, when a nursery school curriculum is said to encourage creative activities such as drawing or story telling. In this essay, I will restrict the meaning of the term in two ways: First, I will be concerned solely with creative productivity, that is, with creativity expressed in the actual production of creative works and not with the unexpressed potential for producing such works. Second, I will be concerned only with creative acts at the highest level, that is, with the best and most valued works of our artists, scientists, and scholars.

Society defines creative acts through a complex process of social judgment. It relies most heavily on the opinions of relevant experts in making such judgments-music critics, art historians, scholars, and scientists who are presumed to know the field But even expert judgments are highly subjective and are frequently influenced by irrelevant factors. For example, they are influenced by the expert's current focus of attention (Gregor Mendel had to wait decades before the appropriate experts recognized that his work was important), and by the reputation of the creator (it is hard for an unknown writer to get a publisher's attention).

Despite the vagaries of such judgments, there appears to be a core of three evaluations which underlie the identification of a creative act. These are: 1) the act must be seen as original or novel, 2) the act must be seen as valuable or interesting, and 3) the act must reflect well on the mind of the creator. All three of these criteria appear to be essential if an act is to be considered creative. No matter how well executed a work may be, it will not be considered creative unless it incorporates substantial new ideas not easily derived from earlier work. Thus, even the best copies of paintings are not judged creative, not, at least, if the source is known. And no matter how original an act is, it will not be considered creative unless it is also judged to be valuable. A composer may arrange notes in a novel and unexpected way, but the work will not be considered creative unless it is also judged to have musical value. Finally, an act will not be judged creative unless it reflects the intelligence of the creator. If a work is produced entirely accidentally, then it is not judged creative. This does not mean that chance can't play a role in genuinely creative acts. Austin (1978) makes an interesting distinction among four kinds of chance events. Chance I is just blind luck. It could happen to anyone and doesn't depend on any special ability of the person it happens to. In chance II, luck depends on the person's curiosity or persistence in exploration. The fact that a curious person attends more, say, to the habits of beetles makes that person more likely to discover something interesting about beetles than a person who regards them simply as something to be squashed. In chance III, luck depends on the person having extensive knowledge of the field not shared by most people. Thus, the Curies' discovery of radium depended on their recognizing that a certain mineral was more radioactive than it ought to be on the basis of the known elements it contained. Clearly only a very knowledgeable person could make such a discovery. This is the sort of chance that Pasteur was talking about when he said, "... chance favors only the prepared mind." Finally, in chance IV, luck depends on the person's particular, and perhaps unique, intellectual style or pattern of interests. Acts which involve chance events of the last three kinds do reflect credit on the mind of the actor and thus are potentially creative.

In the remainder of this chapter, I will discuss data bearing on two major questions: "What are the characteristics of creative people?" and "What cognitive processes are involved in creative acts?" Finally, I will present a theoretical framework to account for these data.

Characteristics of Creative People

Do creative people have high IQs? Yes and no.

It is often assumed that creativity is closely related to I.Q. Indeed, both Roe (1953) studying eminent physicists, biologists, and social scientists and MacKinnon (1968) studying distinguished research scientists, mathematicians, and architects found that the creative individuals they studied had I.Q.s ranging from 120 to 177-well above the general average. However, these higher than average I.Q.s can not be taken as an explanation of the observed creativity and indeed may be unrelated to it.

Several studies indicate that highly creative individuals in a field do not have higher I.Q.s than matched individuals in their field who are not judged to be creative. Harmon (1963) rated 504 physical and biological scientists for research productivity and found no relation between creativity and either I.Q. or school grades. Bloom (1963) studied two samples of chemists and mathematicians. One sample consisted of individuals judged outstandingly productive by colleagues. The other consisted of scientists who were matched in age, education, and experience to the first sample, but who were not judged outstandingly productive. While the first group outpublished the second at a rate of eight to one, there was no difference between them in I.Q. In a similar study, MacKinnon (1968) compared scientists, mathematicians, and architects who had made distinguished contributions to their fields with a matched group who had not made distinguished contributions. There was no difference between the two groups in either I.Q. or school grades.

How can it be that creative scientists and architects have higher than average I.Q.s and yet I.Q. does not predict which of two professionals will be the more creative? At least two alternative theories seem plausible. I will call the first alternative the "threshold theory." According to this theory, a person's IQ must be above some threshold value, say 120, if that person is to be successful in creative activities. Above the threshold level, however, IQ differences make no difference in creativity. The reason that there is no correlation between IQ and creativity among professionals is that schooling weeds out professionals with IQs less than 120.

I have proposed an alternative theory which I call the "certification theory" (Hayes, 1978). According to the certification theory, there is no intrinsic relation between creativity and IQ. However, being creatively productive depends on getting a job in which one can display creativity--a job such as college professor, industrial chemist, or architect. Being considered for these jobs typically requires a college or graduate degree. Since school performance is correlated with IQ, it may be that one's opportunity to be creative depends on IQ simply because of the degree requirement. Thus, creative people may not need high IQs to be creative but they may need them to be certified to get jobs where they can put their creativity to work.

This second alternative is worth considering, because if it is correct, or even partly correct, our society may inappropriately be discouraging a large portion of the creative individuals in the population.

Other cognitive and personality traits

A large number of studies have been conducted to identify cognitive and personality traits which characterize creative people. Surprisingly, studies of cognitive traits have generally yielded disappointing results. Perhaps most disappointing are the results on divergent thinking. Divergent thinking is widely believed to be an important part of the creative process (Guilford, 1967) and measures of divergent thinking constitute a major component in the most popular creativity tests, e.g., the Torrance Tests of Creative Thinking. However, Mansfield and Busse (1981), reviewing studies of divergent thinking in scientific thought, conclude that there is essentially no evidence relating divergent thinking to creative performance in science.

Mansfield and Busse (1981) also reviewed studies of 16 other cognitive tests and concluded that none "has consistently shown high correlations with measures of real-life creativity." Researchers have been more successful in identifying personality traits in creative people. I will review evidence concerning four traits which appear to differentiate more creative from less creative people: devotion to work, independence, drive for originality, and flexibility.

Devotion to work

One of the most consistent observations about creative people is that they work very hard. Roe (1951), who studied a group of top ranked physicists and biologists, described them this way:

"There is only one thing that seems to characterize the total group, and that is absorption in their work, over long years, and frequently to the exclusion of everything else. This was also true of the biologists. This one thing alone is probably not of itself sufficient to account for the success enjoyed by these men, but it appears to be a sine qua non."

Chambers (1964) and Ypma (1968) also report that creative people work harder than others. Harris (1972) reports that University of California professors spend an average of 60 hours weekly on teaching and research. Herbert Simon, 1978 Nobel Laureate in economics, spent about 100 hours per week for years doing the work for which he eventually won the Nobel Prize (personal communication).

Independence

Researchers have consistently found that creative people have a strong drive for independence of thought and action. In particular, they seem to want very strongly to make their own decisions about what they do. Chambers (1964) finds that the creative scientist "... is not the type of person who waits for someone else to tell him what to do, but rather thinks things through and then takes action on his own with little regard to convention or current ‘fashion’” (p. 14). He also finds, "When seeking a position,... the overwhelming choice for the creative scientists is the opportunity to do really creative research and to choose problems of interest to them" (p. 6, italics added).

MacKinnon (1961) found that creative architects also strongly preferred independent thought and action to conformity. Ypma (1968) found that creative scientists were more likely than other scientists to say that they would like to have "a good deal of responsibility" in their jobs. Further, Ympa found that creative scientists were much more likely than others to answer "yes" to the question, "Did you ever build an apparatus or device of your own design on your own initiative and not as part of any required school assignment during your later school years?" (Here, "later school years" refers to high school and college.) This last result is interesting in the light of the success that the Westinghouse Science Talent Search has had in identifying outstandingly creative scientists. The Westinghouse Science Talent Search has selected 40 high school students each year since 1942 on the basis of self-initiated projects rather than written tests or grades. The projects are then evaluated for excellence by two scientists in the project's field. In the group of 1520 students selected between 1942 and 1979, there are five Nobel prize winners, five winners of MacArthur Fellowships, and two winners of the Fields Medal in Mathematics. This remarkable performance suggests that the tendency to initiate independent action is, indeed, an important trait of the creative person and that it may be exhibited quite early in the person's career.

The drive for originality

Since creative acts are by definition original, it wouldn't be surprising if creative people showed a special drive to be original. In fact, that is just what research has shown. MacKinnon (1963) describes the typical creative architect in his study as, "... satisfied only with solutions which are original and meet his own high standards of architectural excellence ..." Ypma (1968) found that when they are asked about their major motivations, the more creative scientists were likely to answer, "To come up with something new." Barron (1963) and Bergum (1975) havemade similar observations.

Flexibility

Helson and Crutchfield (1970) administered the California Psychological Inventory to 105 mathematicians who had been rated for creativity by other mathematicians. The more creative mathematicians scored significantly higher on the flexibility scale than did the less creative mathematicians.

In an extensive review of research on creativity in engineers, Rouse (1986) also found that flexibility was strongly correlated with creative performance. Creative engineers tended to mix algorithmic and associative thinking and to represent knowledge both visually and symbolically.

What Cognitive Processes are Involved in Creative Acts?

In this section, I will present an analysis of creative acts in terms of familiar cognitive processes, that is, in terms of processes that are involved in everyday thought and action. Before doing so, though, I should note that there are (at least) two points of view which hold that such an analysis is impossible. The first of these is that creative acts are, in principle, unanalyzable and the second, that creative acts involve special processes which are not involved in other kinds of thought.

Are creative processes unanalysable?

Karl Popper asserts quite forcefully that the process of scientific discovery is indeed unanalyzable. In The Logic of Scientific Discovery (1959), Popper says on pages 31-32,

"The initial stage, the act of conceiving or inventing a theory, seems to me neither to call for logical analysis nor to be susceptible of it."

"... My view of the matter, for what it is worth, is that there is no such thing as a logical method of having new ideas, or a logical reconstruction of this process. My view may be expressed by saying that every discovery contains `an irrational element,' or `a creative intuition,' in Bergson's sense."

In their book, Scientific Discovery: An Account of the Creative Processes, Langley, Simon, Bradshaw, and Zytkow (1987) present a position directly challenging Popper's view. These authors argue that it is indeed possible to account for scientific discovery in terms of well specified heuristic procedures. In particular, they hold that discoveries are achieved when the scientist applies sensible heuristic procedures in drawing inferences from data. They argue quite convincingly for the adequacy of this view by incorporating such heuristics in computer programs, and showing that these programs can induce well known scientific laws from data. For example, one program, BACON. 1, incorporates the following search heuristics:

• Look for variables (or combinations of variables) with constant value.
• Look for linear relations among variables.
• If two variables increase together, consider their ratio.
• If one variable increases while another decreases, consider their product.

When provided with appropriate data, this program successfully induced Boyle's law, Kepler's third law, Galileo's law, and Ohm's law. Lenat had demonstrated earlier (Lenat, 1976) that a well specified set of heuristics, incorporated in his program, AM (for Automated Mathematician), could make interesting discoveries in mathematics. For example, AM discovered de Morgan's laws, the unique factorization of numbers into primes, and Goldbach's conjecture.

Of course, these results don't mean that human creative processes can be accounted for entirely in terms of such search heuristics. If a person did make a discovery by applying search heuristics to data, it would still be interesting to ask what motivated the person to examine that data. However, the results do demonstrate the plausibility of accounting for an important part of the creative process through common sense search heuristics.

Is there a special creative process?

At present, the special process view appears to have achieved "straw man" status in the scientific literature on creativity. It is much more frequently attacked than defended. Further, there are no live candidates for "special creative process" that have substantial empirical backing. While we should not rule out the possibility that such special processes may someday be discovered, we should continue to exercise a healthy skepticism toward candidates which are proposed in the popular press, e. g., "lateral thinking," "right brain thinking," etc. Parsimony appears to be serving us well in this area.

The "Nothing-Special" position

This position, due primarily to Herbert Simon and his coworkers (Simon, 1966; Newell, Shaw, and Simon, 1964), holds that creative acts are a variety of problem solving and that they involve only those processes which are also involved in everyday problem solving activities. According to this view, creative acts are problem solving acts of a special sort. First, they are problem solving acts which meet criteria such as those above-that is, they are seen as novel and valuable and they reflect the cognitive abilities of the problem solver. Second, they typically involve ill-defined problems-that is, problems which cannot be solved unless the problem solver makes decisions or adds information of his or her own.

Ill-defined problems occur frequently in practical settings. For example, in architectural practice, the client typically specifies a few of the properties of a building to be designed but the architect must supply many more before the design problem can be solved.

To describe creative activities as problem solving needn't but to many does suggest that creation happens only when the creative person is in some sort of trouble. To an extent, this is true. Necessity is the mother of invention-at least, of some invention. But, there are other sorts of situations which lead to creation. Creators aren't always digging themselves out of trouble. In many cases, it is reasonable to think of them as taking advantage of opportunities-of recognizing the possibility of improving what is currently a satisfactory situation. Whether an individual is exploring an opportunity or resolving a difficulty, the important point is that they are setting goals and initiating activities to accomplish those goals.

Having reviewed the alternative points of view, I will now return to the analysis of creative acts in terms of familiar cognitive processes. Below, I will discuss a variety of cognitive processes for which there is either data or plausible inference to suggest that it is especially important in creative acts.

Preparation

There is very wide agreement among researchers that preparation is one of the most important conditions of creativity (Wallas, 1926; Ypma, 1968; Mansfield & Busse, 1981). By preparation, we refer to the effort of the creative person, often carried out over long periods of time, to acquire knowledge and skills relevant to the creative act. Hayes (1985) has provided strong evidence that even the most talented composers and painters, e.g., Mozart and Van Gogh, required years of preparation before they began to produce the work for which they are famous. Hayes surveyed all of the composers mentioned in Schonberg's The Lives of the Great Composers (1970) for whom there was sufficient biographical data to determine when they first became seriously interested in music, e.g., began piano lessons in earnest. Seventy-six composers were included in the study. Next, he identified the notable works of these composers and the dates on which they were composed. (He defined a notable work for this study as one for which at least five different recordings were currently available). From these data, he calculated when in the composer's career, that is, how many years after the onset of serious interest, each work was composed. Out of more than 500 works, only three were composed before year ten of the composer's career and these three were composed in years 8 and 9. Averaged over the group, the pattern of career productivity involved an initial ten-year period of silence, a rapid increase in productivity from year 10 to year 25, a period of stable productivity from year 25 to about year 45 and then a gradual decline.

In the same paper, Hayes reported a parallel study of 131 painters using biographical data to determine when each became seriously involved in painting. He defined the notable works of these painters as ones which were reproduced in any of 11 general histories of art. The pattern of career productivity for the painters was similar to that observed in the composers. There was an initial period of silence lasting about six years. This was followed by a rapid increase in productivity over the next six years, a period of stable productivity until about 35 years into career and then a period of declining productivity.

Wishbow (1988) conducted a biographical study similar to those just described of 66 eminent poets. For her study, she defined a notable poem as one included in the Norton Anthology of Poetry. She found that none of her 66 poets wrote a notable poem earlier than five years into their careers and 55 of the 66 produced none earlier than ten years into their careers.

The early silence observed in all three of these studies suggests that a long period of preparation is essential for creative productivity even for the most talented of our composers, painters, and poets. In conducting this research, both Hayes and Wishbow encountered considerable skepticism expressed by experts in music, art, and literature that such investigations could produce any consistent result. The skepticism was based on the following very reasonable argument:

1. These studies included individuals of very diverse esthetic orientations, e.g., Wagner and Satie, who were attempting to do very different things.

2. These studies included individuals from four different centuries (the 17th through the 20th) who produced their works in very different social contexts.

3. Therefore, there is no reason to expect that there would be consistency in the conditions favoring creative performance across such diverse times and groups.

There is nothing logically wrong with this argument. It might be that differences in social context and esthetic goals would dominate all other conditions of creative productivity. As it turns out, they don't. Creators appear to require a long period of preparation despite differences in time and esthetic objectives.

What is this period of preparation used for? Simon and Chase (1973) observed that chess players require about ten years of preparation before they reach the level of grand master. They suggest that during this time, the serious player learns a vast store of chess patterns through hundreds of hours devoted to study and play. They estimate that a player needs to know roughly 50,000 chess patterns in order to play at the grand master level. One can easily imagine that composers, painters, and poets need a comparable period of time to acquire sufficient knowledge and skills to perform in their fields at world class levels.

Goal setting

Goal setting often appears to be the most critical element in a creative act. According to Einstein and Infeld (1938):

"Galileo formulated the problem of determining the velocity of light, but did not solve it. The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill. To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science."

Pavlov's discovery of the conditioned reflex is another case in point. As part of a study of digestive processes, Pavlov was investigating the salivary reflex in dogs. Dogs salivate automatically when food is placed in their mouths. The experiment went well at first, but after a while, the dogs began to salivate before the food was placed in their mouths. This development seriously complicated the study that Pavlov was trying to carry out. However, rather than seeing it as an annoyance to be eliminated, he saw it as an interesting phenomenon to be investigated. Against the advice of his colleagues, he abandoned his original objective and set a new goal which led to his historic work on the conditioned reflex.

Janson (1983) claims that Manet's painting, Luncheon on the Grass, was historically significant because it was "a visual manifesto" of a new set of goals-goals which emphasized the importance of visual effects on the canvas in contrast to social or literary "meanings" which a painting might convey. He says, "Here begins an attitude that was later summed up in the doctrine of Art for Art's Sake ..." (p. 607).

Of course, goal setting isn't always difficult. There are many situations in which the goals are obvious even though the means for achieving them are not. Everyone knows that curing cancer and reducing auto accidents are valuable goals to strive for. What distinguishes the creative people in the examples given above is that they recognized an opportunity or a problem when other people did not. What might be responsible for differences in people's ability to find problems or to recognize opportunities? Since we know very little about such processes, any account must admittedly be speculative. Here are some hypotheses:

1. Extensive knowledge of a field should give one increased ability to recognize both opportunities and problems by analogy to previous experience. For example, if a chess situation resembles one the player has been in before, it could signal an opportunity if the previous outcome was favorable, and a problem if it was not.

2. A unique pattern of knowledge outside of a field, acquired perhaps through hobbies or through switching professions, could provide a person with analogies not generally available to others in the field. Such analogies could suggest unsuspected possibilities or problems in the field. Consistent with this view, Gordon (1961) recommends that problem solving teams in industry should include people from very diverse fields.

3. Strong evaluation skills may lead one to recognize problems in a line of research that others fail to recognize and as a result to initiate new studies that others would not have thought of. Evaluation skills in the social sciences seem to depend heavily on the sorts of critical thinking skills taught Huck and Sandler's Rival Hypotheses (1979). Perhaps some aspects of creative performance could be improved through training in these skills.

These hypotheses could be viewed as examples of the operation of Austin's Chance III and Chance IV.

Representation

Since tasks which allow scope for creativity are typically ill-defined, a person doing such a task is forced to make many choices in building a representation of the task. For example, an architect may be given the task of designing a shop together with specifications of the location, size, type of merchandise to be displayed, clientele, etc. To represent the design problem in sufficient detail so that it can be solved, the architect must make a great many decisions. For example, he may decide that the shop should have a certain kind of access, should be "transparent," and should have "levels" (see Hayes, 1978, pp. 206-210). Ill-defined problems offer a great deal of latitude in the way they can be represented or defined.

The way one represents a task can have a critical impact on how hard the task is to do or even whether it can be done at all. Kotovsky, Hayes, and Simon (1987) showed that a problem represented in one way may be 16 times as hard to solve as the same problem represented a different way. The 16 to 1 range almost certainly underestimates the full range over which changes in representation can change problem difficulty. Thus, choosing to represent a problem visually rather than verbally, or choosing to represent the problem by one metaphor rather than another could make a sufficient difference in problem difficulty that one scholar may be able to solve the problem and another not. In some cases, then, the creative person-the one who solved the problem when others couldn't may be the person who chose the best representation of the problem.

Kotovsky, Hayes, and Simon (1985) were comparing different representations of the same problem. Even though the problem solvers' representations of the problem were different in the sense that a problem element might be represented as a position in one case and as a size in another, the underlying problem was always the same. It is rare, though, for two people, acting independently, to define an ill-defined problem in the same way. If two architects were commissioned to design the same house, they would almost certainly interpret that commission in different ways, placing different emphases on the various design requirements. Each architect would define his or her own design task. It is tempting to speculate that creative people define "better" or "more interesting" tasks for themselves than do less creative people.

While there are no studies comparing task definition in creative and non-creative people, there are some task definition studies comparing experts and novices. These studies show that a very important part of the difference between experts and novices may lie in the way they define the task to be performed. Hayes, Flower, Schriver, Stratman, and Carey (1987) found that novice writers represented the task of revision as a sentence level task. That is, they attended to each sentence separately, fixing the grammatical and lexical problems it contained, and concerned themselves rarely or not at all with global problems such as transitions, coherence, and the effectiveness of the whole text. The experts, in contrast, were primarily concerned with the global problems although they fixed the local problems as well. The experts did a far better job of revision than did the novices, and it seems clear in this case that their better performance depended on their having defined a better task for themselves. One can't really expect to do a good job of revision with a task definition that ignores a very important class of problems. Carey and Flower (this volume) provide an excellent discussion of how expert-novice differences in task definition influence expository writing. While these expert-novice studies can't be taken as proof, they do make it seem plausible that creative people may differ from less creative people in part because they define better tasks for themselves.

Searching for solutions

Many approaches to improving creative thinking such as brainstorming (Osbome, 1948) and Synectics (Gordon, 1961) focus on the fostering of divergent thinking, that is, on generating many alternative solutions to the same problem. These techniques appear to be useful for some kinds of group problem solving (Stein?). However, as was noted above, divergent thinking skills appear to be unrelated to the sort of creative productivity that this chapter is concerned with.

It is interesting to contrast the emphasis in the creativity literature on the importance of generating many solution paths with the emphasis in the cognitive science literature (see Newell and Simon, 1972 ) on the importance of heuristic search, that is with narrowing many solution paths down to a few. Perhaps high level creative activities are more likely to demand heuristic search than divergent thinking.

In an early but still influential discussion of creativity, Wallas (1926) claimed that incubation is one of the characteristic stages of the creative process. By incubation, he meant a stage in which the problem solver has stopped attending to the problem but during which progress is being made toward the solution anyway. Researchers have attempted to demonstrate the reality of the phenomenon with experiments of this sort: Experimental and control subjects are given a complex problem to solve. The control subjects are allowed to work continuously on the problem until they solve it. The experimental subjects are interrupted in their solution efforts and asked to attend to another task for a period of time before they are allowed to return to the problem and solve it. If the experimental subjects required less total time working on the problem to solve it than the control subjects, that would be taken as evidence of incubation. While a number of early investigators failed to obtain positive results with this experiment (Cook, 1934, 1937; Ericksen, 1942), more recent experimenters have obtained positive results (Fulgosi & Guilford, 1968; Murray & Denny, 1969; Silviera, 1971).

The success of these experiments, however, can't be taken as definite proof that incubation occurred. The problem, as Ericsson and Simon (1984) point out, is that it is very difficult to establish that the experimental subjects obeyed (or, indeed, could obey) instructions not to attend to the problem during the incubation period.

Even if incubation is a real phenomenon, it doesn't follow that it is a characteristic stage of the creative process. Hayes (1978) reanalysed the data on which Wallas based his conclusions (the testimony of creative individuals) and found many instances in which creative acts proceeded from beginning to end without any pause that would allow for incubation. While Wallas' claims for incubation are interesting, it appears that there is little empirical evidence to support them.

Revision

In performing skilled activities, people often stop to evaluate what they have produced and to improve on any shortcomings they may find. This revision process appears to be especially important in creative activities because of the very high standard involved. Murray, a Pulitzer prize winning essayist, speaks eloquently about the importance of revision. "Rewriting isthe difference between the dilettante and the artist, the amateur and the professional, the unpublished and the published." William Glass testifies, "I work not by writing but rewriting." Dylan Thomas states, "Almost any poem is fifty to a hundred revisions-and that's after it's well along." Archibald MacLeish talks of "the endless discipline of writing and rewriting and rewriting" (Murray, 1978, p. 85).

Revision, of course, is not confined to writing. It happens in the development of scientific theory, in painting, and in musical composition. For example, in a letter, Tchaikovsky says, "Yesterday, when I wrote you about my method of composing, I did not enter sufficiently into that phase of the work which relates to the working out of the sketch. This phase is of primary importance. What has been set down in a moment of ardour must now be critically examined, improved, extended, or condensed, ..." (quoted in Vernon, 1970, p. 59).

If revision is an important part of creative activity, it is reasonable to expect that creative people may be better at revision than are others. While evidence on this issue is scant at best, the question is interesting enough to pursue. There are at least three possible factors which might make creative people superior revisors:

1. Creative people may have higher standards for performance than others.

While this is a very plausible assertion, it validity has been tested only in the area of standards for creativity. As was noted above, creative people aspire more than others to be creative. The impact that this might have on performance is illustrated in a study carried out by Magone (personal communication). Magone collected think-aloud protocols of people who were taking a creativity test in which they were asked to complete a drawing in as many different ways as they could. She found that people who scored high on the test were much more likely than those who scored low to reject ideas as "trite" or "boring." While this creativity test probably does not predict real creativity, the study does illustrate the point that high standards for creativity can shape performance.

2. Creative people may be more sensitive than others in perceiving that standards have notbeen met.

There are no studies comparing creative people with others in this skill. However, Hayes, et al. (1987) have found that expert writers were far more sensitive detectors of text problems than were novices.

3. Experts may be more flexible than others in considering change.

Results of personality surveys, cited above, suggest that creative people are, in fact, more flexible than others. Flexibility could increase one's chances of performing creatively in a number of ways: A more flexible person might be more likely than others to drop everything to pursue a hot new lead as Pavlov did in the example presented earlier. A flexible person might be more likely than others to sacrifice less important goals in order to accomplish more important ones. And a more flexible person might be more likely than others to change problem representation if progress toward a solution is unsatisfactory.

Discussion

In this chapter, we have explored two major questions. In answer to the question, "What are creative people like?" we found fairly good empirical evidence to support the following conclusions:

1. Creative people work very hard.

2. Creative people are more disposed to setting their own agenda and to taking independent action than are others.

3. Creative people strive for originality.

4. Creative people show more flexibility than others.

5. Creative people do not have higher IQs or get better school grades than others when we control for age and education. In fact, no cognitive abilities have been identified which reliably distinguish between creative and non-creative people.

The surprising thing about these findings is that all of the variables which discriminate between creative and non-creative people are motivational. No cognitive abilities have been discovered which discriminate between these two groups.

In exploring the question, "What cognitive factors are involved in creative acts?" we have uncovered convincing evidence on two points:

1. Years of preparation are essential for creative productivity in many fields.

2. Goal setting is the critical element in many creative acts.

In addition, plausible arguments can be made for the importance of the following in creative acts:

1. Choosing good problem representations.

2. Defining good problems in ill-defined problem situations.

3. Accurately evaluating the shortcomings of one's own work.

4. Taking effective action to revise the shortcomings.

Clearly, both cognitive and motivational factors are involved in creative performance. However, the failure of cognitive ability measures such as IQ to predict creative performance leads me to propose that creative performance has its origin not in innate cognitive abilities but rather in the motivation of the creative person. Over a period of time, this motivation has cognitive consequences, such as the acquisition of large bodies of knowledge, which contribute in critical ways to creative performance, but the origin is in motivation, not cognition.

The motivation of the creative person may be thought of as a vector which is special both in strength and direction. Motivation of great strength is necessary because creative people face daunting tasks. They must work for many years, perhaps for a decade or more, before they can begin to accomplish their creative goals. They may have to reject easily available rewards in order to pursue their fields. One of my students said, "I must like art a lot to be willing to go to school for four years in order to be out of work." They may sometimes have to face active opposition as Pavlov did.

The direction of motivation is as critical as its strength. Success in many areas of life requires strong motivation and hard work. In many practical situations, the hard work must be directed to satisfying the demands of a boss or the standards or interests of the public. Creative people, however, are motivated to be in charge of their own actions, and through those actions, to do something that hasn't been done before, perhaps hasn't even been thought of before.

The nature of their motivation may lead creative people to take different paths than others take. For example, creative people may choose fields, such as the arts or sciences, where they believe they can exercise their interest in creative activities, rather than sales or medical practice where creative activities may not be appreciated.

Motivational differences can result in important differences in cognitive factors. If a person is willing to work longer and harder than others, he or she can acquire a larger body of information than others. In solving a problem, this extra information might be used directly to make an essential inference or might provide an analogy that would suggest a solution path. Willingness to work hard could also lead persons to define harder and better problems for themselves and in general to set higher standards for themselves. Higher standards could lead one to be more critical of shortcomings in one's work. Motivation to be independent would predispose persons to set their own goals and motivation to be creative would lead them to reject goals that were "trite" or "boring."

Finally, motivation to be flexible could make it easier to change direction completely when a new opportunity presents itself, to sacrifice minor objectives to accomplish major ones, and to change representation when progress is unsatisfactory. The primary thrust of the position that we are presenting here is that differences in creativity have their origin in differences in motivation. These differences in motivation then cause cognition differences and these motivational and cognitive differences jointly account for the observed differences between creative and non-creative individuals.

Sunday 23 January 2011

Why Chinese Mothers Are Superior

This articles confirms some of the things I've been saying, that basically success will not come without hard work.



Can a regimen of no playdates, no TV, no computer games and hours of music practice create happy kids? And what happens when they fight back?

By AMY CHUA

A lot of people wonder how Chinese parents raise such stereotypically successful kids. They wonder what these parents do to produce so many math whizzes and music prodigies, what it's like inside the family, and whether they could do it too. Well, I can tell them, because I've done it. Here are some things my daughters, Sophia and Louisa, were never allowed to do:
• attend a sleepover
• have a playdate
• be in a school play
• complain about not being in a school play
• watch TV or play computer games
• choose their own extracurricular activities
• get any grade less than an A
• not be the No. 1 student in every subject except gym and drama
• play any instrument other than the piano or violin
• not play the piano or violin.

I'm using the term "Chinese mother" loosely. I know some Korean, Indian, Jamaican, Irish and Ghanaian parents who qualify too. Conversely, I know some mothers of Chinese heritage, almost always born in the West, who are not Chinese mothers, by choice or otherwise. I'm also using the term "Western parents" loosely. Western parents come in all varieties.

All the same, even when Western parents think they're being strict, they usually don't come close to being Chinese mothers. For example, my Western friends who consider themselves strict make their children practice their instruments 30 minutes every day. An hour at most. For a Chinese mother, the first hour is the easy part. It's hours two and three that get tough.

When it comes to parenting, the Chinese seem to produce children who display academic excellence, musical mastery and professional success - or so the stereotype goes. WSJ's Christina Tsuei speaks to two moms raised by Chinese immigrants who share what it was like growing up and how they hope to raise their children.

Despite our squeamishness about cultural stereotypes, there are tons of studies out there showing marked and quantifiable differences between Chinese and Westerners when it comes to parenting. In one study of 50 Western American mothers and 48 Chinese immigrant mothers, almost 70% of the Western mothers said either that "stressing academic success is not good for children" or that "parents need to foster the idea that learning is fun." By contrast, roughly 0% of the Chinese mothers felt the same way. Instead, the vast majority of the Chinese mothers said that they believe their children can be "the best" students, that "academic achievement reflects successful parenting," and that if children did not excel at school then there was "a problem" and parents "were not doing their job." Other studies indicate that compared to Western parents, Chinese parents spend approximately 10 times as long every day drilling academic activities with their children. By contrast, Western kids are more likely to participate in sports teams.

What Chinese parents understand is that nothing is fun until you're good at it. To get good at anything you have to work, and children on their own never want to work, which is why it is crucial to override their preferences. This often requires fortitude on the part of the parents because the child will resist; things are always hardest at the beginning, which is where Western parents tend to give up. But if done properly, the Chinese strategy produces a virtuous circle. Tenacious practice, practice, practice is crucial for excellence; rote repetition is underrated in America. Once a child starts to excel at something—whether it's math, piano, pitching or ballet—he or she gets praise, admiration and satisfaction. This builds confidence and makes the once not-fun activity fun. This in turn makes it easier for the parent to get the child to work even more.

Chinese parents can get away with things that Western parents can't. Once when I was young—maybe more than once—when I was extremely disrespectful to my mother, my father angrily called me "garbage" in our native Hokkien dialect. It worked really well. I felt terrible and deeply ashamed of what I had done. But it didn't damage my self-esteem or anything like that. I knew exactly how highly he thought of me. I didn't actually think I was worthless or feel like a piece of garbage.

As an adult, I once did the same thing to Sophia, calling her garbage in English when she acted extremely disrespectfully toward me. When I mentioned that I had done this at a dinner party, I was immediately ostracized. One guest named Marcy got so upset she broke down in tears and had to leave early. My friend Susan, the host, tried to rehabilitate me with the remaining guests.

The fact is that Chinese parents can do things that would seem unimaginable—even legally actionable—to Westerners. Chinese mothers can say to their daughters, "Hey fatty—lose some weight." By contrast, Western parents have to tiptoe around the issue, talking in terms of "health" and never ever mentioning the f-word, and their kids still end up in therapy for eating disorders and negative self-image. (I also once heard a Western father toast his adult daughter by calling her "beautiful and incredibly competent." She later told me that made her feel like garbage.)
Chinese parents can order their kids to get straight As. Western parents can only ask their kids to try their best. Chinese parents can say, "You're lazy. All your classmates are getting ahead of you." By contrast, Western parents have to struggle with their own conflicted feelings about achievement, and try to persuade themselves that they're not disappointed about how their kids turned out.

I've thought long and hard about how Chinese parents can get away with what they do. I think there are three big differences between the Chinese and Western parental mind-sets.

First, I've noticed that Western parents are extremely anxious about their children's self-esteem. They worry about how their children will feel if they fail at something, and they constantly try to reassure their children about how good they are notwithstanding a mediocre performance on a test or at a recital. In other words, Western parents are concerned about their children's psyches. Chinese parents aren't. They assume strength, not fragility, and as a result they behave very differently.

For example, if a child comes home with an A-minus on a test, a Western parent will most likely praise the child. The Chinese mother will gasp in horror and ask what went wrong. If the child comes home with a B on the test, some Western parents will still praise the child. Other Western parents will sit their child down and express disapproval, but they will be careful not to make their child feel inadequate or insecure, and they will not call their child "stupid," "worthless" or "a disgrace." Privately, the Western parents may worry that their child does not test well or have aptitude in the subject or that there is something wrong with the curriculum and possibly the whole school. If the child's grades do not improve, they may eventually schedule a meeting with the school principal to challenge the way the subject is being taught or to call into question the teacher's credentials.

If a Chinese child gets a B—which would never happen—there would first be a screaming, hair-tearing explosion. The devastated Chinese mother would then get dozens, maybe hundreds of practice tests and work through them with her child for as long as it takes to get the grade up to an A.
Chinese parents demand perfect grades because they believe that their child can get them. If their child doesn't get them, the Chinese parent assumes it's because the child didn't work hard enough. That's why the solution to substandard performance is always to excoriate, punish and shame the child. The Chinese parent believes that their child will be strong enough to take the shaming and to improve from it. (And when Chinese kids do excel, there is plenty of ego-inflating parental praise lavished in the privacy of the home.)

Second, Chinese parents believe that their kids owe them everything. The reason for this is a little unclear, but it's probably a combination of Confucian filial piety and the fact that the parents have sacrificed and done so much for their children. (And it's true that Chinese mothers get in the trenches, putting in long grueling hours personally tutoring, training, interrogating and spying on their kids.) Anyway, the understanding is that Chinese children must spend their lives repaying their parents by obeying them and making them proud.

By contrast, I don't think most Westerners have the same view of children being permanently indebted to their parents. My husband, Jed, actually has the opposite view. "Children don't choose their parents," he once said to me. "They don't even choose to be born. It's parents who foist life on their kids, so it's the parents' responsibility to provide for them. Kids don't owe their parents anything. Their duty will be to their own kids." This strikes me as a terrible deal for the Western parent.

Third, Chinese parents believe that they know what is best for their children and therefore override all of their children's own desires and preferences. That's why Chinese daughters can't have boyfriends in high school and why Chinese kids can't go to sleepaway camp. It's also why no Chinese kid would ever dare say to their mother, "I got a part in the school play! I'm Villager Number Six. I'll have to stay after school for rehearsal every day from 3:00 to 7:00, and I'll also need a ride on weekends." God help any Chinese kid who tried that one.

Don't get me wrong: It's not that Chinese parents don't care about their children. Just the opposite. They would give up anything for their children. It's just an entirely different parenting model.

Here's a story in favor of coercion, Chinese-style. Lulu was about 7, still playing two instruments, and working on a piano piece called "The Little White Donkey" by the French composer Jacques Ibert. The piece is really cute—you can just imagine a little donkey ambling along a country road with its master—but it's also incredibly difficult for young players because the two hands have to keep schizophrenically different rhythms.

Lulu couldn't do it. We worked on it nonstop for a week, drilling each of her hands separately, over and over. But whenever we tried putting the hands together, one always morphed into the other, and everything fell apart. Finally, the day before her lesson, Lulu announced in exasperation that she was giving up and stomped off.

"Get back to the piano now," I ordered.
"You can't make me."
"Oh yes, I can."

Back at the piano, Lulu made me pay. She punched, thrashed and kicked. She grabbed the music score and tore it to shreds. I taped the score back together and encased it in a plastic shield so that it could never be destroyed again. Then I hauled Lulu's dollhouse to the car and told her I'd donate it to the Salvation Army piece by piece if she didn't have "The Little White Donkey" perfect by the next day. When Lulu said, "I thought you were going to the Salvation Army, why are you still here?" I threatened her with no lunch, no dinner, no Christmas or Hanukkah presents, no birthday parties for two, three, four years. When she still kept playing it wrong, I told her she was purposely working herself into a frenzy because she was secretly afraid she couldn't do it. I told her to stop being lazy, cowardly, self-indulgent and pathetic.

Jed took me aside. He told me to stop insulting Lulu—which I wasn't even doing, I was just motivating her—and that he didn't think threatening Lulu was helpful. Also, he said, maybe Lulu really just couldn't do the technique—perhaps she didn't have the coordination yet—had I considered that possibility?

"You just don't believe in her," I accused.
"That's ridiculous," Jed said scornfully. "Of course I do."
"Sophia could play the piece when she was this age."
"But Lulu and Sophia are different people," Jed pointed out.

"Oh no, not this," I said, rolling my eyes. "Everyone is special in their special own way," I mimicked sarcastically. "Even losers are special in their own special way. Well don't worry, you don't have to lift a finger. I'm willing to put in as long as it takes, and I'm happy to be the one hated. And you can be the one they adore because you make them pancakes and take them to Yankees games."
I rolled up my sleeves and went back to Lulu. I used every weapon and tactic I could think of. We worked right through dinner into the night, and I wouldn't let Lulu get up, not for water, not even to go to the bathroom. The house became a war zone, and I lost my voice yelling, but still there seemed to be only negative progress, and even I began to have doubts.

Then, out of the blue, Lulu did it. Her hands suddenly came together—her right and left hands each doing their own imperturbable thing—just like that.

Lulu realized it the same time I did. I held my breath. She tried it tentatively again. Then she played it more confidently and faster, and still the rhythm held. A moment later, she was beaming.

"Mommy, look—it's easy!" After that, she wanted to play the piece over and over and wouldn't leave the piano. That night, she came to sleep in my bed, and we snuggled and hugged, cracking each other up. When she performed "The Little White Donkey" at a recital a few weeks later, parents came up to me and said, "What a perfect piece for Lulu—it's so spunky and so her."
Even Jed gave me credit for that one. Western parents worry a lot about their children's self-esteem. But as a parent, one of the worst things you can do for your child's self-esteem is to let them give up. On the flip side, there's nothing better for building confidence than learning you can do something you thought you couldn't.

There are all these new books out there portraying Asian mothers as scheming, callous, overdriven people indifferent to their kids' true interests. For their part, many Chinese secretly believe that they care more about their children and are willing to sacrifice much more for them than Westerners, who seem perfectly content to let their children turn out badly. I think it's a misunderstanding on both sides. All decent parents want to do what's best for their children. The Chinese just have a totally different idea of how to do that.

Western parents try to respect their children's individuality, encouraging them to pursue their true passions, supporting their choices, and providing positive reinforcement and a nurturing environment. By contrast, the Chinese believe that the best way to protect their children is by preparing them for the future, letting them see what they're capable of, and arming them with skills, work habits and inner confidence that no one can ever take away.

Email

999rich@gmail.com